Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2239382

ABSTRACT

SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.


Subject(s)
Bacteriophages , COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , RNA , Bacteriophages/genetics , Amino Acids , Proteomics , Viruses/genetics , Microscopy, Fluorescence
2.
Biomedicines ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2228377

ABSTRACT

It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.

3.
Medicina (Kaunas) ; 58(5)2022 May 06.
Article in English | MEDLINE | ID: covidwho-1875698

ABSTRACT

This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient's clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Feces , Humans , Nasopharynx , SARS-CoV-2
4.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820444

ABSTRACT

SARS-CoV-2 has become one of the most studied viruses of the last century. It was assumed that the only possible host for these types of viruses was mammalian eukaryotic cells. Our recent studies show that microorganisms in the human gastrointestinal tract affect the severity of COVID-19 and for the first time provide indications that the virus might replicate in gut bacteria. In order to further support these findings, in the present work, cultures of bacteria from the human microbiome and SARS-CoV-2 were analyzed by electron and fluorescence microscopy. The images presented in this article, in association with the nitrogen (15N) isotope-labeled culture medium experiment, suggest that SARS-CoV-2 could also infect bacteria in the gut microbiota, indicating that SARS-CoV-2 could act as a bacteriophage. Our results add new knowledge to the understanding of the mechanisms of SARS-CoV-2 infection and fill gaps in the study of the interactions between SARS-CoV-2 and non-mammalian cells. These findings could be useful in suggesting specific new pharmacological solutions to support the vaccination campaign.

5.
Reprod Toxicol ; 111: 34-48, 2022 08.
Article in English | MEDLINE | ID: covidwho-1819592

ABSTRACT

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Brain/metabolism , Child , Humans , Neuroglia , Neurons/metabolism , Peptides , Spike Glycoprotein, Coronavirus/metabolism
6.
Medicina (Kaunas) ; 57(3)2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1143533

ABSTRACT

Reverse transcriptase polymerase chain reaction (RT-PCR) negative results in the upper respiratory tract represent a major concern for the clinical management of coronavirus disease 2019 (COVID-19) patients. Herein, we report the case of a 43-years-old man with a strong clinical suspicion of COVID-19, who resulted in being negative to multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR tests performed on different oropharyngeal and nasopharyngeal swabs, despite serology having confirmed the presence of SARS-CoV-2 IgM. The patient underwent a chest computed tomography (CT) that showed typical imaging findings of COVID-19 pneumonia. The presence of viral SARS-CoV-2 was confirmed only by performing a SARS-CoV-2 RT-PCR test on stool. Performing of SARS-CoV-2 RT-PCR test on fecal samples can be a rapid and useful approach to confirm COVID-19 diagnosis in cases where there is an apparent discrepancy between COVID-19 clinical symptoms coupled with chest CT and SARS-CoV-2 RT-PCR tests' results on samples from the upper respiratory tract.


Subject(s)
COVID-19/diagnosis , Feces/chemistry , Lung/diagnostic imaging , Nasopharynx/chemistry , Oropharynx/chemistry , RNA, Viral/isolation & purification , Adult , Antibodies, Viral/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , False Negative Reactions , Feces/virology , Humans , Immunoglobulin M/immunology , Male , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/genetics , Specimen Handling , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL